References

Allen, F. H., Kennard, O. \& Taylor, R. (1983). Acc. Chem. Res. 16, 146-153.
Ammon, H. L. (1986). CAD4PROFILE, unpublished.
Axiotis, S., Dreux, M., Perrin, M. \& Royer, J. (1982). Tetrahedron, 38, 499-504.
Gilmore, C. J. (1983). MITHRIL. Univ. of Glasgow, Scotland.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.

Lehmann, M. S. \& Larsen, F. K. (1974). Acta Cryst. A30, 580-584.
luo, J., Ammon, H. L. \& Gilliland, G. J. (1989). J. Appl. Cryst. 22, 186.
Molecular Structure Corporation (1989). TEXSAN. TEXRAY Structure Analysis Package. Version 5.0. MSC, 3200A Research Forest Drive, The Woodlands, TX 77381, USA.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158166.

Zachariasen, W. H. (1968). Acta Cryst. A24, 212-216.

Acta Cryst. (1991). C47, 2484-2485

Structure of N-Methyl Benzaldehyde Nitrone

By R. B. Bedford, P. A. Chaloner* and P. B. Hitchcock
School of Chemistry and Molecular Sciences, University of Sussex, Falmer, Brighton, England

(Received 4 April 1991; accepted 18 June 1991)

Abstract

N\)-(Benzylidene)methylamine N-oxide, $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}, \quad M_{r}=135 \cdot 2$, orthorhombic, Pbca, $a=$ 9.665 (2),$\quad b=7.981$ (1), $\quad c=19.071$ (2) $\AA, \quad U=$ $1471.0 \AA^{3}, Z=8, D_{x}=1.22 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=$ $0.71069 \AA, \mu=0.8 \mathrm{~cm}^{-1}, F(000)=576, T=298 \mathrm{~K}$, $R=0.043$ and $w R=0.050$ for 661 observed reflections with $\left|F^{2}\right|>3 \sigma\left(F^{2}\right)$. The geometry about the carbon-nitrogen double bond is Z, and there is little deviation from planarity.

Experimental. The compound was prepared by reaction of N-methylhydroxylamine with benzaldehyde, and crystals were obtained by recrystallization from benzene/light petroleum. A crystal of dimensions $0.35 \times 0.35 \times 0.08 \mathrm{~mm}$, cut from a larger plate crystal, was used for data collection. Unit-cell parameters by least squares fit of 25 reflections in the range $15<2 \theta<22^{\circ}$, space group Pbca from systematic absences of $0 k l, k$ odd; $h 0 l, l$ odd; $h k 0, h$ odd; Enraf-Nonius CAD-4 diffractometer, graphitemonochromated Mo $K \alpha$ radiation, $\theta-2 \theta$ scan, $\Delta \theta=$ $(0.8+0.35 \tan \theta)^{\circ}$, max. scan time $1 \mathrm{~min}, 1538$ measured unique reflections for $2<\theta<25^{\circ}$ and $h 0 \rightarrow 9$, $k 0 \rightarrow 11, l 0 \rightarrow 22,661$ reflections for $\left|F^{2}\right|>3 \sigma\left(F^{2}\right)$, $\sigma\left(F^{2}\right)=\left[\sigma^{2}(I)+\left(0.04 I^{2}\right]^{1 / 2} / \mathrm{Lp}\right.$. Two standard reflections measured every hour showed $11 \cdot 3 \%$ decay and a correction was applied to the data, Lorentz and polarization corrections, no absorption or extinction corrections. The structure was solved by direct methods using SHELXS86 (Sheldrick, 1985), refinement by full-matrix least squares with anisotropic thermal parameters. H atoms were located

[^0]0108-2701/91/112484-02\$03.00
from the difference map and refined with isotropic thermal parameters. With a weighting scheme of $w=$ $1 / \sigma^{2}(F), \sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ minimized, the final residuals were $R=0.043, w R=0.050$ for 661 observed reflections, 127 variables, $S=1 \cdot 5,(\Delta / \sigma)_{\text {max }}=0.01$, $(\Delta \rho)_{\text {max, min }}=+0.16, \quad-0.18 \mathrm{e}^{\AA^{-3}} \quad$ on \quad a final difference map. Programs from SDP-Plus Structure Determination Package (B. A. Frenz \& Associates, Inc., 1984) were run on a MicroVAX II computer. Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV). Atomic parameters are given in Table $1 \dagger$ and selected bond distances and angles are presented in Table 2. Fig. 1 shows the molecular structure and the numbering scheme.

Related literature. Z-Nitrones are generally the major products from this preparative route (Breuer, Aurich \& Nielsen, 1988). The structure of the 4 -chlorobenzaldehyde derivative has been determined (Folting, Lipscomb \& Jerslev, 1964). The $\mathrm{N}-\mathrm{O}$ bond is shorter and the $\mathrm{C}=\mathrm{N}$ bond longer than in our case. In the derivative of 4-chloro-2,6-dimethylbenzaldehyde there is considerable deviation from planarity due to steric crowding (Jensen \& Jerslev, 1969). Deviations from planarity are also noted in other highly substituted nitrones (Falshaw, Hashi \&

[^1]© 1991 International Union of Crystallography

Table 1. Fractional atomic coordinates $\left(\times 10^{4}\right.$ for O , $\mathrm{N}, \mathrm{C} ; \times 10^{3}$ for H$)$ and equivalent isotropic thermal parameters $\left(\AA^{2} \times 10^{3}\right)$

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$
O	$2539(2)$	$1193(3)$	$4605(1)$	$65(1)^{*}$
N	$3712(2)$	$1962(3)$	$4659(1)$	$50(1)^{*}$
Cl	$4147(3)$	$2879(4)$	$4026(1)$	$64(2)^{*}$
C 2	$4478(3)$	$1985(4)$	$5218(1)$	$49(1)^{*}$
C 3	$4168(3)$	$1246(3)$	$5888(1)$	$46(1)^{*}$
C 4	$3035(3)$	$220(3)$	$6036(1)$	$52(1)^{*}$
C 5	$2812(3)$	$-361(4)$	$6710(1)$	$61(2)^{*}$
C 6	$3716(4)$	$47(4)$	$7245(1)$	$65(2)^{*}$
C 7	$4850(3)$	$1027(4)$	$7104(1)$	$64(2)^{*}$
C 8	$5093(3)$	$1612(4)$	$6436(1)$	$54(2)^{*}$
$\mathrm{H} 1 a$	$344(3)$	$385(4)$	$394(1)$	$53(9)$
$\mathrm{H} b$	$403(3)$	$216(4)$	$365(1)$	$41(8)$
$\mathrm{H} 1 c$	$506(4)$	$334(5)$	$405(2)$	$78(12)$
H 2	$530(3)$	$261(3)$	$516(1)$	$20(7)$
H 4	$245(3)$	$-6(3)$	$567(1)$	$23(7)$
H 5	$209(3)$	$-115(4)$	$682(1)$	$39(9)$
H 6	$354(3)$	$-35(3)$	$772(1)$	$36(8)$
H 7	$551(3)$	$129(4)$	$747(2)$	$56(9)$
H 8	$588(3)$	$234(3)$	$633(1)$	$27(7)$

* U_{eq} is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.

Table 2. Intramolecular distances (\AA) and angles (${ }^{\circ}$) with e.s.d.'s in parentheses

$\mathrm{O}-\mathrm{N}$	$1 \cdot 293$ (3)	$\mathrm{N}-\mathrm{Cl}$	1.473 (4)
$\mathrm{N}-\mathrm{C} 2$	1.298 (3)	C2-C3	1.438 (4)
C3-C4	1.395 (4)	C3-C8	1.406 (4)
C4-C5	1.383 (4)	C5-C6	1.383 (4)
C6-C7	1.373 (5)	C7-C8	1.378 (4)
$\mathrm{O}-\mathrm{N}-\mathrm{Cl}$	114.8 (2)	$\mathrm{O}-\mathrm{N}-\mathrm{C} 2$	$124 \cdot 9$ (2)
$\mathrm{C} 1-\mathrm{N}-\mathrm{C} 2$	$120 \cdot 3$ (2)	$\mathrm{N}-\mathrm{C} 2-\mathrm{C} 3$	$127 \cdot 2$ (2)
C2-C3-C4	$125 \cdot 7$ (2)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8$	116.2 (2)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 8$	118.1 (2)	C3-C4-C5	120.4 (2)
C4-C5-C6	120.6 (3)	C5-C6-C7	$119 \cdot 6$ (3)
C6-C7-C8	120.7 (3)	C3-C8-C7	120.5 (3)

Fig. 1. Molecular structure and numbering scheme for $\mathrm{PhCH}=\mathrm{N}(\mathrm{Me}) \mathrm{O}$.

Taylor, 1985; Pritchard, Banks, DuBoisson \& Tipping, 1991).

References

B. A. Frenz \& Associates, Inc. (1984). SDP-Plus Structure Determination Package. College Station, Texas, USA.
Breuer, E., Aurich, H. G. \& Nielsen, A. (1988). Nitrones, Nitronates and Nitroxides, pp. 139-313, edited by A. S. Kende. New York: John Wiley
Falshaw, C. P., Hashi, N. A. \& Taylor, G. A. (1985). J. Chem. Soc. Perkin Trans. 1, pp. 1837-1843.
Folting, K., Lipscomb, W. N. \& Jerslev, B. (1964). Acta Cryst. 17, 1263-1275.
Jensen, K. G. \& Jerslev, B. (1969). Acta Cryst. B25, 916925.

Pritchard, R. G., Banks, R. E., DuBoisson, R. A. \& Tipping, A. E. (1991). Acta Cryst. C47, 230-232.

Sheldrick, G. M. (1985). SHELXS86. In Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. GodDard, pp. 175-189. Oxford Univ. Press.

Acta Cryst. (1991). C47, 2485-2488

Mesogenic 4'-(4-Hydroxy-1-butoxy)biphenyl-4-carbonitrile and Non-Mesogenic 4-(4'-Cyano-4-biphenyloxy)-1-butyl Acrylate

By Stefan Gehring, Udo Quotschalla,* Helmut Paulus \dagger and Wolfgang Haase \ddagger
Institut für Physikalische Chemie, Technische Hochschule Darmstadt, Petersenstr. 20, D-6100 Darmstadt, Germany

Abstract. (A) $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2}, M_{r}=267 \cdot 3$, triclinic, $P \overline{1}$, $a=14.418(6), \quad b=9.236(4), \quad c=5.651(3) \AA, \quad \alpha=$ $89.91(2), \beta=85.37(2), \gamma=72.93(2)^{\circ}, V=716.8 \AA^{3}$,

[^2]$Z=2, \quad D_{x}=1.238 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71069 \AA$, $\mu=0.46 \mathrm{~cm}^{-1}, F(000)=284, T=295 \mathrm{~K}$, final $R=$ 0.0820 for 1942 unique reflections with $F_{o}>3 \sigma\left(F_{o}\right)$. (B) $\quad \mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{3}, \quad M_{r}-321 \cdot 4$, triclinic, $P \overline{1}, \quad a=$ 12.978 (4),$\quad b=9.941$ (3),$\quad c=6.971$ (2) $\AA, \quad \alpha=$ 95.81 (1) $, \quad \beta=100.63(1), \quad \gamma=102.62(1)^{\circ}, \quad V=$ $853 \cdot 1 \AA^{3}, \quad Z=2, \quad D_{x}=1.251 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=$ $0.71069 \AA, \mu=0.48 \mathrm{~cm}^{-1}, F(000)=340, T=297 \mathrm{~K}$,

[^0]: * To whom correspondence should be addressed.

[^1]: \dagger Lists of structure factors, anisotropic temperature factors, bond lengths and angles involving H atoms, H -atom parameters, torsion angles and a packing diagram have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54360 (9 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * Present address: CIBA GEIGY Marienberg GmbH, Bensheim, Germany.
 \dagger Fachbereich Materialwissenschaft, Fachgebiet Strukturforschung, TH Darmstadt, Germany.
 \ddagger To whom correspondence should be addressed.

